| Chapter 16 Reading Guide | Name: |       |     |
|--------------------------|-------|-------|-----|
| AP Chemistry 2016-2017   |       | Date: | Per |

The concepts in this chapter are part of Big Idea 6 on equilibrium. Buffer solutions and their properties, titrations and titration curves, and precipitate formation concepts are part of the AP Chemistry Curriculum.

#### 16.1 The Danger of Antifreeze

1. Explain how the blood is able to keep a stable pH. What species are used to maintain this stability?

#### 16.2 Buffers: Solutions that Resist pH Change

- 2. What is a buffer?
  - a. What composes a buffer?
  - b. How does a buffer work?
- 3. Explain what evidence in this figure below supports the claim that this is a buffer solution.



### 16.3 Buffer Effectiveness: Buffer Range and Buffer Capacity

- 4. What factors determine the effectiveness of a buffer?
- 5. What is buffer capacity?
- 6. What is the range of a buffer? How is it determined?
- 7. A buffer is most effective when which two conditions are met? Explain why.

- 8. How can you calculate the range over which a buffer will be most effective?
- 9. What is the range of effectiveness for a buffer with a  $pK_a$  of 6?

#### 16.4 Titrations and pH Curves

- 10. What is the equivalence point of a titration?
- 11. What is a titration curve?
- 12. Using the curve below, describe what evidence is provided in a titration curve.



13. Describe what is occurring in the image at right. What does the observation in each flask indicate?



- 14. What does the shape of a titration curve depend on?
- 15. Compare and contrast these two titration curves.



- 16. How does the titration curve from a titration of a weak acid and a strong base differ from a titration with a strong acid and a strong base?
- 17. What does the amount of base or acid added to reach the equivalence point depend on?
- 18. How can a titration curve be used to determine the  $pK_a$  of an acid?
- 19. Why is the pH of a titration of a weak acid and strong base always basic at the equivalence point?



20. Explain how this titration curve indicates a weak acid and strong base were titrated.

21. What features of this titration curve indicate a weak base was titrated with a strong acid?



# 22. What features of this titration curve indicate the titration was done with a polyprotic acid?



23. What does each equivalence point in a polyprotic titration represent?

24. What does the endpoint of a titration indicate?

- a. What is the difference between an equivalence point and an end point of a titration?
- b. Why is it important to choose the right indicator?

25. What color is phenolphthalein in an acid? In a base?

## 16.5 Solubility Equilibria and the Solubility Product Constant

26. What is K<sub>sp</sub>? What does K<sub>sp</sub> indicate?

27. What is molar solubility? What are the units of molar solubility? How is it calculated?

28. Explain why K<sub>sp</sub> is not the same as molar solubility.

29. What effect do common ions have on solubility of a compound?

30. How does pH affect solubility of a compound? Use magnesium hydroxide as an example in both a basic pH and an acidic pH.

## **16.6 Precipitation**

- 31. What is the differences between Q and K<sub>sp</sub>?
- 32. What conditions are present in...
  - a. An unsaturated solution?
  - b. A saturated solution?
  - c. A supersaturated solution?
- 33. Explain how Q can be used to determine if two solutions poured together will precipitate.